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Pattern dynamics associated with on-off convection in a one-dimensional system
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A numerical and theoretical analysis of the phenomenologically constructed nonlinear stochastic model of
on-off intermittency experimentally observed by Johnet al. in the electrohydrodynamic convection in nematic
liquid crystal under applied dichotomous electric field is carried out. The model has the structure of the
one-dimensional Swift-Hohenberg equation with a fluctuating threshold which represents an applied electric
field and either with or without additive noise which corresponds to thermal noise. It is found that the
fundamental statistics of pattern dynamics without additive noise agree with those experimentally observed,
and also with those reported previously in two-dimensional system. In contrast to that the presence of multi-
plicative noise generates an intermittent evolution of pattern intensity, whose statistics are in agreement with
those of on-off intermittency so far known, the additive noise gives rise to the change of position of the
convective pattern. It is found that the temporal evolution of the phase suitably introduced to describe the
global convective pattern also shows an intermittent evolution. Its statistics are studied in a detailed way with
numerical simulation and stochastic analysis. The comparison of these results turn out to be in good agreement
with each other.
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I. INTRODUCTION

Intermittency spatially or temporally observed is a ub
uitous phenomenon in nonlinear systems. The small-s
dynamics in hydrodynamic turbulence is the most famo
example. An intermittency is also often observed in dyna
cal systems which show chaotic motions. For example,
intermittency known as modulational intermittency or on-o
intermittency occurs when a synchronized chaos in a cou
chaotic oscillator system undergoes the instability as the c
trol parameter is changed@1–3#. On-off intermittency has
been often studied in dynamical systems with a small nu
ber of degrees of freedom@4–6#. Several years ago, the ob
servation of the intermittency was first reported experim
tally in the system with a large number of degrees
freedom, e.g., in the spin wave instability@7#.

It is known that the on-off intermittency has the thr
characteristic statistics@4#: ~i! the probability densityP( l )
for l (t), the magnitude of the deviation from the particul
chaotic submanifold, asymptotically obeys a power law w
exponent211h, whereh is a small positive value,~ii ! the
spectral intensity of time series$ l (t)% exhibits a power law
with the exponent21/2 in a low frequency region, and~iii !
the probability densityQ(t) for the laminar durationt,
where the laminar state stands for that being close to
particular chaotic submanifold, asymptotically takes a pow
law with the exponent23/2 for a wide range oft. The
characteristics~i! and ~ii ! are explained by a nonlinear mu
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tiplicative stochastic model for the time evolution ofl (t). In
fact, according to the multiplicative noise model, the exp
nenth is determined as

h5
l

G f
, ~1!

wherel (.0) represents the deviation of the external co
trol parameter from its critical value andG f is the intensity of
the modulational noise of the so-called local transverse
pansion rate. Third characteristic statistics~iii ! is simply de-
rived by the theory of first passage time problem of Brow
ian motion of the linearized multiplicative stochastic mod

The electrohydrodynamic convection~EC! is one of the
most famous examples in nonequiliblium systems obser
in liquid crystal system@8#. In the nematic liquid crystal
system, EC caused by the electrohydrodynamic instab
~EHD! under an electric field is quite famous. So far, stud
on EC have been mainly carried out by applying tempora
periodic electric field@9#. On the other hand, several work
on EC under the application of stochastic electric field w
reported@10–14#. Recently, Behn, Lange, and John predict
that even if the pure dichotomous noise is applied, the on
of the EC would be observed as the amplitude of noise
increased@11#. This prediction was recently experimental
proved by John, Stannarius, and Behn~JSB! @12#. In addi-
tion, they reported that the intermittency is observed in as
ciation with the onset of EC, and showed that it quite
sembles to the signature of on-off intermittency, observ
the laminar duration distribution, where the laminar state i
plies the planar alignment of directors along the electro
planes@12#. Furthermore, very recently, they reported th
the probability density of the pattern intensity and the sp
©2003 The American Physical Society23-1
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tral intensity of time series of the pattern intensity are a
same as those of on-off intermittency@13,14#.

In a previous paper, in order to explain JSB’s result
Ref. @12#, we proposed a phenomenological nonlinear s
chastic model for EC under the stochastic electric field@15#.
The model has the structure of the Swift-Hohenberg equa
with the noise-modulated growth rate. In the study using t
equation in the two-dimensional~2D! system@15#, we re-
ported that the numerical integration shows intermitt
emergence of convective pattern and that its statistics
same as those known for on-off intermittency. However,
though the pattern intensity changes intermittently in
course of time, no global pattern change is observed. No
the existence of thermal noise, we added the additive n
term in the our model equation. It was found that the int
duction of the additive noise makes the pattern form chan
This implies that the effect of thermal noise plays the glo
pattern dynamics in the present situation.

The fundamental aim of the present paper is to study
details of the statistical dynamics of the phenomenolog
model in the 1D system both numerically and theoretica
Particularly, we will study the statistics of a phase varia
associated with the intermittent change of convective patt
The present paper is organized as follows. In Sec. II,
propose a phenomenological stochastic model of EC un
the stochastic electric field. A few characteristics of t
model are pointed out. Numerical results on the stocha
dynamics of convective pattern dynamics are given in S
III. The onset of intermittent emergence of convective p
tern intensity will be observed. Furthermore, it is shown t
in contrast to that the random modulation in the thresh
causes the change of pattern intensity, thermal noise m
the pattern itself change. Theoretical analysis of our mode
developed in Sec. IV. We propose the statistics of the ph
variable relevant to convective pattern and compare
theory with the numerical simulations. In Sec. V, we discu
the phase diffusion of the most unstable mode. The m
square displacement of the phase is calculated analytic
and is compared to the numerical simulation. We give c
clusion and remarks in Sec. VI.

II. PHENOMENOLOGICAL MODEL FOR EC INDUCED
BY APPLIED STOCHASTIC FIELD

Although thermal convection of neutral fluid has ofte
been studied both experimentally and theoretically@8,16,17#,
it is quite difficult to study EC by starting with the funda
mental equations of motion for EHD because they are q
complicated. Near the convection threshold, there appear
kinds of modes; critical and noncritical. The former is d
rectly relevant to the formation of convective pattern and
latter is stably slaved to the critical mode. Adiabatica
eliminating noncritical modes, Swift and Hohenberg~SH!
derived the amplitude equation,

]w~r ,t !

]t
5@l2~¹21kc

2!2#w~r ,t !2w3~r ,t !, ~2!

near the onset of convective pattern in thermal convectio
neutral fluid @8,16,17#. Here,w(r ,t) is the vertical compo-
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nent of macroscopic local velocity of fluid at positionr at
time t, l is the deviation of the Rayleigh numberR from its
critical valueRc , i.e.,l5R2Rc , kc being the wave numbe
of the most unstable mode.

In this paper, we phenomenologically extend the S
equation, adding multiplicative noise and additive noise, i

]w~r ,t !

]t
5@l1 f ~ t !2~¹21kc

2!2#w~r ,t !2w3~r ,t !1g~r ,t !.

~3!

In the experimental situation of JSB@12#, w(r ,t) is the gra-
dient of the angle between the local director and the e
trode plates, andl is the mean deviation from its critica
value. Thekc is the wave number of the linearly most un
stable mode. Thef (t) is the applied spatially uniform modu
lation noise and,

G f5E
0

`

^ f ~ t ! f ~ t8!&dt, ~4!

is the intensity of the threshold modulation, where the an
lar brackets stand for the ensemble average. Theg(r ,t) rep-
resents thermal noise and is assumed to be Gaussian-w
noise, i.e.,

^g~r ,t !&50, ^g~r ,t !g~r 8,t8!&52«d~r2r 8!d~ t2t8!.
~5!

One should note thatG f@« because the external stochas
field is more crucial than the thermal noise.

Equation~3! always has a quiescent statew(r ,t)50 for
any r andt, which corresponds to the complete planar alig
ment of directors to the electrodes, providedg(r ,t) is absent.
The linear stability of this state is examined with thek-mode
growth rate,

lk[l2~k22kc
2!2 ~k5uku!. ~6!

If l,0, there exists no unstable mode and the spatial pat
eventually decays into the planar state. On the other han
l.0, the planar state is unstable for modes with wave nu
bers aroundkc , and this situation leads to the emergence
convective pattern.

III. NUMERICAL SIMULATIONS AND RESULTS

In the present paper, we consider the 1D system with
system sizeL. The pattern intensity at timet is measured by
the quantity

l ~ t ![H 1

LE0

L

@w~x,t !#2dxJ 1/2

. ~7!

If l (t)50, no convective pattern is present at timet.
The applied spatially uniform noisef (t) is assumed to be

generated by the Ornstein-Uhlenbeck process,

d f~ t !

dt
52g f ~ t !1R~ t !, ~8!
3-2
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whereR(t) is the Gaussian-white noise with the statistics

^R~ t !&50, ^R~ t !R~ t8!&52Dd~ t2t8!, ~9!

with positive valuesg andD. The statistics off (t) is there-
fore Gaussian and has the correlation function

^ f ~ t ! f ~ t8!&5gG fe
2gut2t8u, ~10!

and the noise intensityG f of f (t) is relatedg andD via

G f5
D

g2
. ~11!

Hereafter, we numerically and theoretically investiga
Eq. ~3! without thermal noise~model A! and with thermal
noise~modelB). Numerical simulations are carried out wit
the use of the Euler scheme for stochastic differential eq
tions interpreted in the Stratonovich sense@18,19#. The time
step for numerical integration was set asDt5531024. We
integrate the scalar field on 256 lattice points with the pe
odic boundary condition. The parameter values were se
be kc51 andL532p. The initial condition was chosen in
such a way that initiallyw(x,0) at each lattice point is ran
domly distributed with the mean zero and the variance 1025.

A. Model A

We first consider the case without thermal noise. The g
erning equation is written as

]w~x,t !

]t
5@l1 f ~ t !2~¹21kc

2!2#w~x,t !2w3~x,t !.

~12!

We carry out the numerical integration of Eq.~12! for several
different values ofl, D, and g with the quasispectra
method. Figure 1 shows the temporal evolution of spa
pattern and$ l (t)% obtained by numerically solving Eq.~12!.
One clearly observes that the temporal evolution ofl (t) and
the spatial pattern show intermittency composed of lami
regions where no apparent pattern change are observed
burst regions where the spatial pattern with the wave num
kc are generated. The temporal evolution ofl (t) is quite
similar to that of the so-called on-off intermittency. The
exists no change of position of the pattern form.

Numerical results with the statistical laws of on-off inte
mittency are compared. Calculating the exponenth5l/G f
by Eq. ~1!, we theoretically get probability densities forl (t)
with the exponent estimated from several values ofl, D, and
g. As shown in Fig. 2, one finds a good agreement w
numerical results.

The second characteristic of on-off intermittency is t
v21/2 law in the low frequency region of the power spectru
is shown in Fig. 3. However, the power lawv21/2 is not
clearly observed for all parametersl, D, andg used in the
present numerical simulation. The region where
asymptotic law I (v)}v21/2 is observed is estimated a
l2/G f!v!G f @6#. In the present simulation, however, th
ratio G f /l is not sufficiently large for parameter values ofl,
04622
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D, andg which we used. This is the reason why the pow
law v21/2 is not so clearly observed. It is worth noting th
for a largev region, the power lawv23/2 is rather observed
in a wide range. This fact may suggest that the on-off int
mittency can exhibit another characteristic observed is
power spectrum in an intermediate frequency range, or m
be derived from our model. However, there exists no th
retical explanation on this power law.

FIG. 1. Simultaneous plots of evolutions of pattern~upper! and
time series ofl (t) ~lower! for l50.001, D510, g550. Dark re-
gion corresponds to positive values ofw(x,t), gray region to values
close to zero, and white region to negative values. One obse
that when a pattern is generated,l (t) takes a nonvanishing value
The pattern generation is intermittent.

FIG. 2. Probability densitiesP( l ) of l (t) for various choices of
parameters. Symbols are the results of numerical simulation for
model ~12! in comparison with the theoretical resultsP( l )} l 211h

~lines!.
3-3
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The statistics of laminar duration was studied with t
laminar duration distribution by constructing the histogra
of laminar durations. Here, the laminar duration is defined
the duration wherel is below a thresholdl th suitably chosen,
separating laminar (l , l th) and burst (l . l th) states. In Fig.
4, the laminar duration distribution obtained from the n
merical results is given. One finds that the observed lam
duration distribution clearly shows the power lawt23/2

which is one of the most well-known characteristics of o
off intermittency @4#. Here, l th was chosen as 0.005. W
confirmed that the exponent 3/2 does not depend on
choice ofl th as far as it is sufficiently small.

We thus observed the intermittent emergence of conv
tive pattern associated with the instability of the planar alig
ment withw50 under the application of multiplicative nois
in the threshold. The intermittency has statistics same
those of on-off intermittency, and agrees with the obser
tion by Johnet al. @11–13#. In this sense, in the previou
paper, the phenomenon was termed on-off convection@15#.

FIG. 3. Spectral intensities of time seriesl (t) for various
choices of parameters. Shown are the results of numerical sim
tion using the model~12! in comparison withv21/2 andv23/2.

FIG. 4. Laminar duration distributionsQ(t) for various choices
of parameters. Symbols are the results of numerical simulation
ing the model~12! in comparison witht23/2 ~line!.
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B. Model B

As shown in the preceding section, the form of convect
pattern does not change for the dynamical equation with
thermal noise. In a real system, the temporal evolution
affected by thermal noise. Hereafter, we investigate its ef
on the temporal evolution of convective pattern. Parame
are set asl50.002,D5100, andg550. With the periodic
boundary condition, we carry out the mode expansion
w(x,t) as

w~x,t !5 (
n52`

`

ŵneiknx, kn5nk1 , k15
2p

L
. ~13!

Substituting the expansion~13! into Eq.~3!, we get the equa-
tions of motion forŵn as

dŵn~ t !

dt
5@lkn

1 f ~ t !#ŵn~ t !2 (
n11n21n35n

ŵn1
ŵn2

ŵn3

1ĝn~ t !. ~14!

Here, ĝn(t) @5ĝ2n* (t)# is the Fourier coefficient for thekn

mode and is defined as

ĝn~ t !5
1

LE0

L

g~x,t !e2 iknxdx. ~15!

The statistics~5! implies

^ĝn~ t !&50, ^ĝn~ t !ĝn8~ t8!&52«̄dn,2n8d~ t2t8!, ~16!

where«̄5«/L. Since the only mode with the wave numb
kc is unstable slightly abovel50, truncating stable mode
except for the modes with the wave numberskc , kc6k1, and
kc62k1, we get the equations of motion forŵn with the
wave numberskc , kc6k1, andkc62k1. Thus, the governing
equations for the numerical simulation are given as

dŵnc
~ t !

dt
5@l1 f ~ t !#ŵnc

~ t !2Nnc
~ t !1ĝnc

~ t !, ~17!

dŵnc61~ t !

dt
5$l2@~nc61!22nc

2#2k1
41 f ~ t !%ŵnc61~ t !

2Nnc61~ t !1ĝnc61~ t !, ~18!

dŵnc62~ t !

dt
5$l2@~nc62!22nc

2#2k1
41 f ~ t !%ŵnc62~ t !

2Nnc62~ t !1ĝnc62~ t !, ~19!

wherenc5kc /k1, andNnc
(t), Nnc61(t), andNnc62 are non-

linear terms of each mode. We will carry out numerical sim
lation for several different values of the intensity« of ther-
mal noise.

la-

s-
3-4
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Here, we define the phaseu(t) by

ŵnc
~ t ![r ~ t !exp@ iu~ t !# ~r ~ t ![uŵnc

~ t !u!.

It is easy to understand that the phase is clearly conne
with the spatial form ofw(x,t). In order to observe the sta
tistics of the temporal evolution of the phase changes for
kc mode, we defineDu as the phase change of thekc mode
per time stepDt. Figure 5 shows the temporal evolution
the spatial pattern, the pattern intensityl (t), and the phase

FIG. 5. Numerical results of pattern evolution~upper!, its cor-
responding time series of the pattern intensityl (t) ~middle! and the

phase change ofŵnc
(t) per unit time for thekc mode~lower! for

l50.002,D5100, g550, and«510214. The dark regions corre
spond to positive values ofw(x,t), the gray regions to values clos
to zero, and the white region to negative values.

FIG. 6. Plot of a trajectory of thekc mode on the complex

ŵnc
(t) plane. Parameter values are same as in Fig. 5. One obs

no phase change whenuŵnc
(t)u is not small enough.
04622
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changeDu per unit time for thekc mode obtained by nu-
merically integrating Eqs.~17!, ~18!, and~19!.

It is worth to note that the time evolution ofl (t) is con-
nected to that obtained for modelA. This is same as in Fig. 1
In addition, one observes that when the pattern fo
changes, the time series of the phase changeDu shows a
prominent intermittent characteristic. Figure 6 shows the
jectories for thekc mode on the complexŵnc

(t) plane. It is
observed that the phase does not change when the ampl
r (t) is large and it suddenly changes due to thermal no
when the amplitude almost vanishes.

Figures 7, 8, and 9 are the statistics of the temporal e
lution of l (t), i.e., its probability density, the power spectru
and the laminar duration distribution under the effect of a
ditive noise. The numerical results are almost same as
modelA because of a weak intensity of thermal noise. Ho
ever, one should note that the probability densityP( l ) for

ves

FIG. 7. Probability densityP( l ) of l (t). Shown are the results
of numerical simulation with modelB ~symbols! and the theoretical
result P( l )} l 211h ~line!. The theoretical curve is obtained forl
50.002,D5100, g550, and, therefore,h50.05.

FIG. 8. The spectral intensity of time seriesl (t) I (v). Shown
are the results of numerical simulation with modelB in comparison
with the power lawsv21/2 andv23/2.
3-5
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l (t) does not obey the asymptotic power lawl 211h in a
small l region as« is increased. This is because that t
thermal noise smears the singularity of the statistics atl (t)
50. Figure 10 shows the probability density for the pha
changeDu. The numerical result suggests the possibility o
new statistics associated with the intermittent change of c
vective pattern. The details of the statistics will be theore
cally studied in the following section.

IV. THEORETICAL RESULTS FOR MODEL B

A. Linear analysis

With the mode expansion Eq.~14! of w(x,t), the on-off
variable l (t) defined in Eq. ~7! is evaluated asl (t)
'@(nuŵn(t)u2#1/2. Here, we examine the linear stability o
ŵn(t)50, i.e., nonconvective state, for each mode. By dr
ping out the nonlinear terms in Eq.~14! and approximating

FIG. 9. The laminar duration distributionQ(t). Shown are the
results of numerical simulation with modelB ~symbols! in compari-
son witht23/2 ~line!.

FIG. 10. Probability densityP(Du) of the phase changeDu(t)
for the time differenceDt50.0005. The results of numerical simu
lation ~symbols! are compared with the theoretical result Eq.~39!
~lines!.
04622
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that f (t) is Gaussian white, the ensemble average ofuŵn(t)u2
for the stationary state is given as

^uŵn~ t !u2&;^uŵn~0!u2&e2(lkn
1G f )t

1
«̄

lkn
1G f

@e2(lkn
1G f )t21#. ~20!

Thus, the modes withlkn
1G f,0 are stable, and the mode

with lkn
1G f.0 are unstable. Moreover, if« is increased,

we get the estimation̂uŵn(t)u2&;«̄/ulkn
1G f u in the laminar

state so that it becomes harder forl (t) to vanish in the lami-
nar state. This fact implies that if the intensity of therm
noise is increased, the pattern will not disappear complet

B. Statistics of l „t… and phase changes

The statistics ofl (t) is theoretically discussed as follows
Suppose that only the mode with the wave numberkc is
unstable, and other modes areŵn(t).0 (nÞ6kc /k1) in the
stationary state. Thus, the system behavior is determine
the kc mode. The substitution ofŵn(t).0 except for
nc([kc /k1) into Eq. ~14! leads to

dŵnc
~ t !

dt
5@l1 f ~ t !#ŵnc

~ t !23uŵnc
~ t !u2ŵnc

~ t !1ĝnc
~ t !.

~21!

Usingŵnc
(t)[r (t)exp@iu(t)#, we get the equations of motio

for r (t) andu(t),

dr~ t !

dt
5@l1 f ~ t !#r ~ t !23r ~ t !31gr~ t !, ~22!

du~ t !

dt
5

1

r ~ t !
gu~ t !. ~23!

Here, we assumed thatgr(t) andgu(t) are statistically inde-
pendent Gaussian-white noises, i.e.,^gr(t)gu(t8)&50 and

^gr~ t !&50, ^gr~ t !gr~ t8!&5 «̄d~ t2t8!, ~24!

^gu~ t !&50, ^gu~ t !gu~ t8!&5 «̄d~ t2t8!. ~25!

Equation~23! immediately shows that there exists no temp
ral evolution of u(t) if thermal noise is absent, i.e., n
change of the pattern form is observed if thermal noise
absent~Fig. 1!.

The Fokker-Planck equation for the joint probability de
sity Q(r ,u,t) of r (t) andu(t) can be written as@20–22#
3-6
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]Q~r ,u,t !

]t
52

]

]r
$@~l1Geff!r 23r 3#Q~r ,u,t !%

1
]2

]r 2 F S «̄

2
1Geffr

2DQ~r ,u,t !G
1

«̄

2r 2

]2Q~r ,u,t !

]u2
, ~26!

where we used the Markov approximation.Geff is the effec-
tive colored-noise strength given by

Geff5
G f

116g21^r 2&
, ~27!

~see Refs.@20,21#!. Here, we defined

P~r ,t ![*2`
` Q~r ,u,t !du.

Integrating Eq.~26! over the phaseu, we get the equation o
P(r ,t) as follows:

]P~r ,t !

]t
52

]

]r
$@~l1Geff!r 23r 3#P~r ,t !%

1
]2

]r 2 F S «̄

2
1Geffr

2D P~r ,t !G
1

«̄

2r 2E2`

` ]2Q~r ,u,t !

]u2
du. ~28!

With a straightforward calculation for Eq.~28!, the stationary
probability densityPst(r ) of r (t) is obtained as

Pst~r !5NS r 21
«̄

2Geff
D (h21)/2

expS 2
3

2Geff
r 2DG~r !.

~29!

Here,N is the normalization constant, and we defined

h5
l

Geff
1

3«̄

2Geff
, ~30!

and

G~r !52E r F S x21
«̄

2Geff
D 2(h11)/2

expS 3

2Geff
x2D

3ExS «̄

2y2E2`

` ]2Qst~y,u!

]u2
du D dyGdx, ~31!

whereQst(r ,u) is the steady state solution of Eq.~26!. Since
l (t).A2r (t) because ofŵn(t).0 except fornc , the steady
probability density P( l ) for l (t) turns out to obey the
asymptotic power law

P~ l !} l 211h, ~32!
04622
for small l if «50. However, it does not obey the asympto
power law l 211h in a small l region if «Þ0. These results
agree with the simulation results as shown in Figs. 2 and

We turn to the statistics ofDu. Suppose thatr (t) is con-
stant since the characteristic time scale ofr (t) is much
longer than that ofu(t), and thatDu obeys the normal dis-
tribution with zero mean and variance«̄Dt/r 2 by Eq. ~23!.
The probability density for the phase change for a giv
amplituder is thus given by

p„Duur ~ t !5r …5
r

A2p«̄Dt
expF2

r 2~Du!2

2«̄Dt
G . ~33!

From Eq.~29!, the stationary probability densityP(Du) of
Du is determined as

P~Du!5E
0

`

p„Duur ~ t !5r …Pst~r !dr5
1

ADt
fS Du

ADt
D ,

~34!

where

f~x!5
N

A8p«̄
S «̄

2Geff
D (h11)/2

E
0

`

~z11!(h21)/2

3exp@2zc~x!#GSA «̄

2Geff
zD dz, ~35!

with the functionG(r ) same as in Eq.~31!, and we intro-
duced

c~x!5
3«̄

4Geff
2 S 11

Geffx
2

«̄
D . ~36!

Figure 11 shows the statistics ofr (t) numerically ob-

FIG. 11. Probability densitiesPst(r ) of the amplituder (t) of the
kc mode for parameter values same as in Figs. 7, 8, and 9. Sh
are the results of numerical simulation with modelB ~symbols!. The
theoretical results are given by the lines. For details of the the
see the text.
3-7
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tained. In order to compare the theoretical result with n
merical result, we assume

G~r !5H 12expF2S 2Geff

«̄
r 2D 1/2G ~r>r min!

0 ~r ,r min!,

~37!

where

r min5d21r M , r M5A «̄

2Geff
, ~38!

whered is a certain constant which is phenomenologica
introduced. In order to compare numerical result in Fig.
we putd5104. Hence, we obtain

f~x!5
N

A8p«̄
S «̄

2Geff
D (h11)/2

E
d22

` 12exp~2z1/2!

~z11!(12h)/2

3exp@2zc~x!#dz. ~39!

With the use of the asymptotic form

12exp~2z1/2!

~z11!(12h)/2
5H 2(h13)/2z1/2 ~z,1!

~z11!(h21)/2 ~z>1!.

f(x) can be approximately obtained as

f~x!'
N

A2p«̄
S «̄

Geff
D (h11)/2

E
d22

1

z1/2exp@2zc~x!#dz

1
N

A8p«̄
S «̄

2Geff
D (h11)/2

E
1

`

~z11!(h21)/2

3exp@2zc~x!#dz

5
N

A2p«̄
S «̄

Geff
D (h11)/2

@c~x!#23/2FgS 3

2
;c~x! D

2gS 3

2
;d22c~x! D G

1
N

A8p«̄
S «̄

2Geff
D (h11)/2

@c~x!#2(11h)/2

3exp@c~x!#GS 1

2
~11h!;2c~x! D , ~40!

whereg(z,p) andG(z,p) stand for the first kind incomplete
g function and the second kind incompleteg function, re-
spectively. Furthermore, using the asymptotic forms@23,24#,
04622
-

,

g~z,p!;H 0 ~p!z!

G~z! ~p@z!,
G~z,p!;H G~z! ~p!z!

0 ~p@z!,

ep/2G~z,p!5pz21e2p/2

3F11 (
n51

`
1

pn
~z21!~z22!•••~z2n!G

;H G~z! ~p→0!

0 ~p→`!,

we obtain the asymptotic forms of Eq.~39! as follows:

f~x!}H S 11
Geff

3«̄
x2D 2(11h)/2

~x!A2Geff!

x23 ~A2Geff!x!dA2Geff!.

~41!

The theoretical result Eq.~39! is compared with the nu-
merical simulation in Fig. 10 for«510214 and 10210 with
Dt being equal to the time step of the time integration. Th
oretical results turn out to be in a good agreement with
results of numerical simulation. In addition, it should b
noted that Eq.~41! also approximates the results of nume
cal simulation well. Here, sincêr 2&;1023 estimated by us-
ing the result of numerical computation, Eq.~27! leads to
Geff.G f . From Eq.~34!, we have the scaling relation with
the scaling functionf(x). Figure 12 depicts the scaling plo
of the P(Du) for several different values ofDt, obtained
from the numerical simulation with«510214. We find a
good agreement between the theory and the simulation.

V. PHASE DIFFUSION ASSOCIATED WITH THE
UNSTABLE MODE

Figure 13 shows the time series ofu(t) for the parameter
values same as in Fig. 5. The temporal evolution ofu(t)

FIG. 12. Scaling forms of the probability densitiesP(Du) of
Du(t) for l50.002,D5100, g550, and«510214. Shown are the
results of numerical simulation for different values ofDt ~symbols!
in comparison with the theoretical result with Eq.~34! ~line!.
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shows apparently intermittent behaviors. By Eq.~23!, we
find thatu(t) changes considerably whenr (t) is small, i.e.,
when the state is in the laminar state. One expects tha
phase variable shows a diffusive motion. In order to anal
the phase statistics, we study the mean square displace
^@u(t)2u(0)#2& below. Sincegu(t) is Gaussian-white noise
which is independent ofgr(t) and r (t), the mean square
displacement̂ @u(t)2u(0)#2& is evaluated as

^@u~ t !2u~0!#2&52Ddifft, ~42!

for large t, where

Ddiff5
«̄

2 K 1

r 2~s!
L 5

«̄

2E0

`

r 22Pst~r !dr ~43!

is the phase diffusion constant. Figure 14 depicts the tim
difference dependence of the mean square displacem
^@u(t)2u(0)#2& obtained by the numerical integration fo
the parameter values same as in Fig. 13. The numerica
tegrations of Eq.~43! carried out with the numerical integra
tions with Eqs.~29! and~37! is compared with the simulation
in Fig. 14. Here, we again setd5104 and used the factGeff
.G f since ^r 2& is small. A good agreement between t
theory and the numerical simulation is found. One sho
note that the present phase diffusion is generated by the p
ence of thermal noise.

In the time region when the amplituder (t) is large, ther-
mal noise does not affect the phase change. On the o
hand, whenr (t) is sufficiently small, thermal noise gives
considerable effect on the phase change. This is the origi
a global diffusive behavior of the phase, and therefore g
erates a considerable long-time change of convective pat

VI. CONCLUSION

In the present paper, we first introduced a phenomenol
cal stochastic model of electrohydrodynamic convection

FIG. 13. Time series of the phase variableu(t) of the kc mode

ŵnc
(t) for the parameter values same as in Fig. 5.
04622
he
e
ent

e-
ent

n-

d
es-

er

of
n-
rn.

i-
n

nematic liquid crystal under the external stochastic elec
field. The model was organized as the Swift-Hohenb
equation with both spatially uniform external stochastic fie
and thermal noise. It was found that numerical simulation
the 1D system shows that a temporal evolution of the pat
intensity is intermittent and its statistics are same as th
statistics of on-off intermittency so far known. These resu
explain JSB’s experimental results. In the case when ther
noise is absent, we did not observe change of pattern fo
On the other hand, when thermal noise is present, the t
porally intermittent change of pattern form is observed. T
temporal evolution of the phase of Fourier coefficientŵnc

(t)
of the most unstable mode also changes simultaneously
intermittent pattern change. The intermittent change of c
vective pattern was in fact reported in a real experiment@14#.
Since the phase ofŵnc

(t) is directly related to the pattern
itself, it is important to study the phase dynamics.

Moreover, in the present paper we studied the probab
density P(Du) for the phase changeDu(t) of the critical
mode for an intervalDt, and found that the scaling relatio
~34! holds for a wide range of time stepsDt. Furthermore,
we derived the asymptotic form of the scaling function@Eq.
~41!#. It was found that in contrast to that the phaseu(t) of
the kc mode does not change when the amplituder (t) is
large enough, it changes considerably due to thermal n
when the amplitude is small. Furthermore, it was shown t
the phase variable shows a diffusion. We derived an appr
mate expression of the diffusion constant. Mean square
placement of phase theoretically obtained turned out to b
a good agreement with numerical simulation. Although a p
tern change is obtained in laboratory experiment@14#, no
analysis of the pattern dynamics is carried out. We hope
analysis of the pattern dynamics in laboratory experimen
made and is compared with the present result in a n
future.

Finally, although our model gives qualitatively same r

FIG. 14. Temporal evolution of the mean square displacem
^@u(t)2u(0)#2& plotted as a function of time differencet for l
50.002, D5100, g550, and«510214. Shown are the results o
numerical simulation~symbols! in comparison with the numerica
integrations of Eqs.~29! and ~37! ~line!.
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sults as those experiments by Johnet al., from the viewpoint
of quantitative comparison of the present approach with
laboratory experiment, no direct correspondence of the
rameters in our model to those in real experiments is kno
We should further study to find concrete correspondence
the model parameters with those in experiments in future
hy
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